
0740 -7459 / 23©2023 I EEE JANUARY/FEBRUARY 2023 | IEEE SOFTWARE 1

Editor: Cesare Pautasso
University of Lugano
c.pautasso@ieee.org

Editor: Olaf Zimmermann
University of Applied Sciences
of Eastern Switzerland, Rapperswil

olaf.zimmermann@ost.ch

INSIGHTS

WE JUST COMPLETED the beta re-
lease of a development effort on a
Python/BPMN workflow system. We
have learned some hard lessons, and as
we look forward to a successful launch
this summer, it is a good time to reflect.

The Problem
Our software, developed for the Uni-
versity of Virginia’s School of Medicine
(UVA SOM), streamlines the submis-
sion process to UVA’s Institutional

Review Board for Health Sciences Re-
search. UVA SOM requested a general-
purpose workflow system, a tool that
could handle frequent tweaks and ad-
justments, because this domain is dom-
inated by change. As many researchers
are aware, a university’s review board
is the perfect storm—a collision of
science, bureaucratic processes, legal
liability, and the progression of profes-
sional careers.

Our Approach
We researched many options for
a method to meet UVA SOM’s

requirements and chose Business Pro-
cess Model and Notation (BPMN)
because it is an open standard with a
rich and comprehensive specification
and wide adoption. BPMN includes
a powerful and robust workflow
diagram standard that looks a little
like flow charts. BPMN 2.0 is par-
ticularly notable for its ability to
be directly executed, meaning that
it can not only describe require-
ments but actually implement them.
We determined that a system based
on BPMN could offer a unique so-
lution to UVA’s needs. The use of

Creating a Low-Code
Business Process
Execution Platform With
Python, BPMN, and DMN
Dan Funk

Digital Object Identifier 10.1109/MS.2022.3212033
Date of current version: xxxxx

From the Editors

The visual Business Process Modeling and Notation (BPMN) offers nonprogrammers

a “low-code/no-code” language for describing and automating their processes. The

author of this edition of the “Insights” column shares his experience on an open source

project developing a BPMN execution engine in Python. Along the journey, the team

valued user interest in features over compliance and standards coverage; learned that

less is more when it comes to teaching and learning notations; and learned that stick-

ing to software engineering principles and practices such as Don’t Repeat Yourself,

version control, and test automation pays off in their development context—just like in

any other one.—Cesare Pautasso and Olaf Zimmermann

INSIGHTS

2 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

easy-to-understand diagrams creates
critical transparency for decisions
that directly affect many different de-
partments, researchers, and reviewers
A well-composed BPMN diagram
reminds stakeholders of competing
requirements and alternate perspec-
tives. Rules, compromises, and long-
established traditions remain open
to investigation. Displaying the pro-
cess openly and clearly invites itera-
tive development as everyone seeks
to find new efficiencies while coping
with inevitable change.

For reference, Figure 1 shows
the first BPMN model we used in a
production system. We’ll talk more
about this diagram and what we
have done since later in the article.
Each box represents an activity or
task. Those with a person icon are
completed by a human being. The
wavy paper denotes Python scripts,
and the spreadsheet denotes a Deci-
sion Model and Notation (DMN)
decision table, which we will also
discuss later.

BPMN offered us the opportunity
to create a “low-code” environment,
a place where citizen developers
(used here to mean domain experts
who may have little prior software
development experience) can grow
from drawing simple diagrams to
developing their own Python code
to meet business requirements, all
within the cradle of a maintainable
and transparent software architec-
ture. While “low-code” is a popular
buzzword at the moment, we believe
BPMN offers something better. We
prefer the term As Much Code As
Needed since there is not a tech-
nology cliff awaiting adopters but
rather a seamless path to more com-
plex development.

We found that the BPMN com-
munity was well grounded in Java
with many implementations.1 F

IG
U

R
E

 1
.

Th
is

 m
od

el
 d

es
cr

ib
es

 th
e

R
es

ea
rc

h
R

ec
ov

er
y

P
ro

gr
am

 (R
R

P
),

a
su

bm
is

si
on

 a
nd

 a
pp

ro
va

l p
ro

ce
ss

 fo
r

br
in

gi
ng

 a
 r

es
ea

rc
h

la
b

ba
ck

 o
nl

in
e

du
rin

g
th

e
fir

st
 s

um
m

er
 o

f t
he

pa
nd

em
ic

. P
I:

pr
in

ci
pa

l i
nv

es
tig

at
or

.

R
ea

d
R

R
P

In
st

ru
ct

io
ns

E
nt

er
P

I I
nf

o
U

pd
at

e
R

eq
ue

st

E
nt

er
E

xc
lu

si
ve

S
pa

ce

E
nt

er
S

ha
re

d
S

pa
ce

E
nt

er
C

or
e

R
es

ou
rc

es

E
nt

er
P

er
so

nn
el

E
nt

er
N

on
-G

ro
un

d
S

pa
ce

s

A
ck

no
w

le
dg

e
P

la
n

R
ev

ie
w

G
en

er
at

e
R

R
P

E
nt

er
R

eq
ue

st
N

ot
es

E
nt

er
O

th
er

R
eq

ui
re

m
en

ts

E
nt

er
H

ea
lth

 S
af

et
y

R
eq

ui
re

m
en

ts

E
nt

er
D

is
ta

nc
in

g
R

eq
ui

re
m

en
ts

U
pl

oa
d

W
ee

kl
y

P
er

so
nn

el
S

ch
ed

ul
e(

s)

A
ss

ig
n

A
pp

ro
va

l
In

fo

A
ck

no
w

le
dg

e
P

la
n

S
ub

m
is

si
on

E
xe

cu
te

P
la

n
S

ub
m

is
si

on

C
he

ck
E

xc
lu

si
ve

A
re

a
M

on
ito

rs

C
he

ck
S

ha
re

d
A

re
a

M
on

ito
rs

C
he

ck
 o

n
R

eq
ue

st
S

ta
tu

s

S
en

d
A

re
a

M
on

ito
r

N
ot

ifi
ca

tio
n

R
ev

ie
w

W
ha

t’s
N

ex
t

E
nt

er
P

hy
si

ca
l W

or
k

A
rr

an
ge

m
en

ts

INSIGHTS

 JANUARY/FEBRUARY 2023 | IEEE SOFTWARE 3

Python, however, offers some sig-
nificant advantages over Java when
working with BPMN. Both Python
and BPMN have low-sloped, but
long, learning curves. Writing a first
program in Python is quick and im-
mediately rewarding. Drawing a
BPMN diagram feels immediately
intuitive and simple as well. For both
Python and BPMN, there is no obvi-
ous brick wall, no point at which the
technology would prohibit further
progress. BPMN is highly expres-
sive and deep. Python is dynamic
and broadly applicable. There is
good reason to believe that coupling
these technologies provides a strong
chance of success if given the right
audience.

What We Learned
Over the last two years, we have
learned a lot about BPMN. We will
divide our lessons learned into three
areas. First, we will cover BPMN
and DMN from our client’s per-
spective and how people receive a
BPMN-enabled application. Second,
we will cover some thoughts about
citizen developers. Finally, we will
dig into the technical challenges of
building BPMN software in Python.

For context, these are lessons we
learned as we created more than
60 individual business processes

that managed areas such as docu-
ment collection and organization;
compliance reviews; financial calcu-
lations; submissions; and approvals.
There were 207 individual BPMN
diagrams (many shared across work-
flows as call activities) and 97 DMN
tables. Completing all the individual
process instances can take many
months, with some individual pro-
cess instances running for weeks.
There may be dozens of concurrent
processes, but this particular proj-
ect is neither processor nor memory
intensive.

Introducing BPMN and DMN
to the Client
We ran into issues early on as we at-
tempted to train individuals to use
BPMN to address business chal-
lenges. We were building a new in-
terpreter and asking our client to run
their BPMN diagrams on that inter-
preter as it was being developed. We
were blessed with some very patient
people with excellent communica-
tion skills. Now that the core BPMN
and form-processing components
are fully functional, BPMN training
should be much easier. However, all
the pain of working in the tool as it
was being built helped create a truly
useful tool. The alternative would
have been to build blindly to the

specification without the push and
pull of real-world needs.

We have found the adoption of
DMN decision tables (spreadsheet-
like tables that map inputs to out-
puts) to be much higher than the
BPMN diagrams. These decision
tables offer a near-seamless transi-
tion for business analysts as they
move from creating spreadsheets
that merely describe requirements
to ones that implement require-
ments. A DMN decision table al-
lows us to define a decision by
mapping a set of inputs (test condi-
tions) to a set of outputs (when each
condition is met).

DMNs can be very expressive,
but to offer a simple example, Figure
2 shows a DMN that maps shipping
types (the “When” column) to ship-
ping costs (the “Then” column). Fig-
ure 3 shows a slightly more complex
example of a DMN table.

As we move into the future, we
will introduce DMN tables earlier
in the training program but always
within the larger context of BPMN to
avoid a technology wall (see the “Sup-
porting the Citizen Developer” sec-
tion). Based on our experience so far,
I suspect that we will find that a por-
tion of the audience is most comfort-
able working within the confines of
these DMN tables. A well-authored

FIGURE 2. When conditions match the content in the “When” column (left column), the content of the “Then” column (middle

column) is produced, such that “standard” shipping outputs a cost of US$5.00.

INSIGHTS

4 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

BPMN diagram can encapsulate fre-
quently shifting business require-
ments into this decision table format,
which requires far less cognitive load;
it is possible to quickly edit the DMN
and then get back to other work with-
out reinvesting mental effort and time
in mastering the BPMN standard.

Supporting the Citizen Developer
We are highly conscious of walking
people into a technology wall. I am
reminded of climbing up the side of a
mountain at Machu Picchu with my
then eight-year-old son, where it be-
came evident that an uncomfortable
step to one person can be a nearly
insurmountable cliff to another.
Moving from DMN decision tables
and then to BPMN diagrams and to
small Python scripts are not seamless
steps, but it is possible to take them
without massive shifts of perspective
because these are all first-order en-
tities in the BPMN framework. Our
recommendation would be to train
with these steps in mind.

Briefly, here is how I would in-
troduce concepts to a new client—
through a pizza ordering system
demonstration.

Step 1: Introduce the Very Basic BPMN
Tools. They don’t have to under-
stand everything initially—just
start with the simplest case and al-
low BPMN to describe and define
the scope of the workflow process.
In this case, we need to get a pizza
order and figure out how much it
costs (Figure 4).

Step 2: Show How to Gather Information
From Users. “What do you want on
your pizza?” is pretty clearly a user
task, which will mean gathering in-
formation from the end user—likely
through some sort of web form.
Show people how to define a form
using a form builder. In this case, it
would be a list of toppings that we
could collect in a toppings variable,
which will be passed on to the next
task.

Step 3: Introduce DMN. As quickly as pos-
sible, demonstrate how to encapsulate
business decisions into decision tables.
Calculating cost is a great opportu-
nity to do so.

Step 4: Run It. Provide immediate feed-
back that the tool works and indeed
solves the real (albeit limited) problem.

Step 5: Repeat, Adding Complexity. BPMN
is a powerful and expressive notation,
with the ability to describe parallel
execution, branching logic and col-
laborations. We recommend that you
introduce these concepts in the con-
text of resolving other business prob-
lems. For example, daily specials and
half-off on Tuesdays might be good
opportunities to add branching logic
(gateways). Sending the final order to
the kitchen’s ordering system (a ser-
vice task) or modeling the work in
the kitchen (lanes) are other poten-
tial learning activities. The trick is to
start small; encapsulate the business
rules in decision tables; and iterate to
solve increasingly complex problems.
The most important concept here is
not to expect mastery of BPMN at
any point.

BPMN and Python
As described previously, Python
was important to our project.

FIGURE 3. In the classic movie Monty Python and the Holy Grail, there is a running argument about how coconuts could show up

in England, and one proposal is that they are carried by swallows. This table provides rules about how many swallows it would require

to transport a given number of coconuts a certain distance, thereby showing a DMN example while removing all pleasure from the

original joke.

FIGURE 4. A very simple BPMN diagram, but it is all that is required to get started.

What do you
want on your

pizza?
Calculate cost.

INSIGHTS

 JANUARY/FEBRUARY 2023 | IEEE SOFTWARE 5

SpiffWorkflow is one of the few li-
braries written in Python that sup-
ports the parsing and execution of
BPMN diagrams and was easily the
most robust implementation we could
find. SpiffWorkflow’s source code is
hosted on GitHub (https://github.com/
sartography/SpiffWorkflow). When
we began, active development had
slowed on the project, but the com-
munity was large, with more than 200
forks and 1,000 stargazers (followers),
and bug fixes were still coming in. We
were able to build a prototype of a
workflow system using SpiffWorkflow
that was able to execute basic BPMN
diagrams, including user tasks, script
tasks, gateways, and subprocesses. The
BPMN that we created online using
the BPMN.io editor could be parsed
and understood by SpiffWorkflow.
We had a good prototype, but we soon
realized that SpiffWorkflow was far
from ready. We have since put a lot of
effort into improving the documenta-
tion of SpiffWorkflow—with detailed
example code to help others where we
struggled. Please see ReadTheDocs
(https://spiffworkflow.readthedocs.io/)
for more information.

Just a few months into the proj-
ect, we repurposed our code to cre-
ate an emergency application for
UVA to allow research labs to re-
open over the late summer of 2020
in the heat of the pandemic. It was
far from pretty, but we were able to
stand the full approval process up
in a few weeks (and a few sleepless
nights). The BPMN diagram for this
project is shown as an example in
Figure 1. That initial diagram was
completely linear. This was due to
some limitations we encountered
with parallel gateways and the per-
sistence of state. We found many is-
sues with the library (then at version
0.6) that made that first produc-
tion deployment difficult. We have

since resolved these issues and many
others.

We now make extensive use of
many more BPMN constructs as we
added support for them in SpiffWork-
flow. Figure 5 is a more recent work-
flow for running a contract through
the finance committee for oversight.

During the project, we spent
hundreds of hours improving the li-
brary. We have made more than 40
pull requests into the open source
repository, which amounts to half
the total pull requests since the proj-
ect’s inception in 2010. Not only
were these accepted, but the previ-
ous maintainer added our team, and
eventually, turned over maintenance
of the project to us. We added sup-
port for DMN tables (multi-instance
tasks, lanes, and events) while im-
proving the execution environment,
error handling, and serialization
(that is, the persistence of state). We
added these features as we discov-
ered a clear and immediate need in
our work for UVA. We never aug-
mented the library as a blind effort
toward meeting the specification,
but we always ensured that we did
work within the specification as we
added new features. In the process,
we have read the 500-page BPMN
specification dozens of times and
have benefited greatly from two ex-
cellent textbooks by Bruce Silver on
BPMN2 and DMN3 that cover best
practices in this domain.

We didn’t have to do this work.
We could have picked up the open
source JBPM or a commercial of-
fering from Trisotech, Flowable, or
Camunda, which are mature and sup-
port a large portion of the BPMN
specification. I feel certain that we
would have taken a different ap-
proach if we had not found the Spiff-
Workflow library, with its active
community and amenable original

maintainer.4 Thankfully, we are find-
ing that other people see the value in
SpiffWorkflow as well, and we are
collaborating with several other com-
panies to continue to expand and de-
velop this library.

There were some wonderful sur-
prises in store for us as we worked
to improve SpiffWorkflow, which in-
cluded the following:

• The presence of a powerful and
well-maintained open source
BPMN editor makes it pos-
sible to author these diagrams
and even embed the editor into
our web applications (thanks
BPMN.io).

• The BPMN standard is great for
branching logic, such as complex
questionnaires (that is, “you can
skip this next set of questions
as your research is just on UVA
grounds, but we do need you to
submit this on-grounds request
to the building committee”) that
might branch off in different
directions under specific circum-
stances. The implementation with
BPMN and SpiffWorkflow was
immediate, clean, and easy. It
made our first efforts delightful.

• BPMN pools and lanes are an
elegant way to model and imple-
ment approval processes. The
diagrams are intuitive, and the
implementation is clean.

• DMN tables are straightforward
and relatively easy to implement.
They are the perfect interface for
business analysts.

There were also some very deep
pitfalls, especially with data man-
agement. For small diagrams, it isn’t
an issue, but as the diagrams become
larger, spanning many files, sub-
processes, call activities, and deci-
sion tables, it becomes a significant

6 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

INSIGHTS

problem. The BPMN specification
speaks only briefly about DataOb-
jects and DataStores and offers little
consideration of variable scope. How
data are scoped can have an enor-
mous impact on the behavior of a di-
agram. (Data scoped to the process
are simple but not at all thread safe;
data scoped to a task are clean, but
then, how do tasks communicate?)
We researched implementations
from existing open and commercial
products, but the handling of data
varied wildly; was deeply nuanced
and complex; and was always mired
in implementation details.

Currently, we allow data to fol-
low the sequence flows, using a pipe
architecture, similar to the Unix
command line. What comes out of
one task naturally flows into the
next, and each task has full con-
trol to modify the data as it sees fit.
This works except for call activities,
which are calls to externally defined
reusable BPMN diagrams. Such com-
positions require something more
complex, such as method signa-
tures, a way to define the required
inputs and outputs. (For additional
information, please see our detailed
documentation on data modeling.5)
Such signatures can be handled using
BPMN’s data input and data output,
and we are building this into the next
release of SpiffWorkflow.

Extensibility
Both communicating with exter-
nal services and data analytics were
handled by injecting custom scripts
into our Python execution engine.
To make a known application pro-
gramming interface (API) call, the
BPMN developer would simply call
a predefined method from within a
script task. These predefined meth-
ods must be maintained as a part of
the application, which is not ideal. In F

IG
U

R
E

 5
.

Th
e

di
ag

ra
m

 d
em

on
st

ra
te

s
th

e
us

e
of

 la
ne

s
to

 p
as

s
w

or
k

of
f b

et
w

ee
n

di
ffe

re
nt

 s
ta

ke
ho

ld
er

s
an

d
ca

ll
ac

tiv
iti

es
 (t

he
 b

ol
de

d
sq

ua
re

s)
 to

 c
al

l o
ut

 to
 o

th
er

 r
eu

sa
bl

e
B

P
M

N

di
ag

ra
m

s.
 T

he
 e

xc
lu

si
ve

 g
at

ew
ay

s
(m

ar
ke

d
w

ith
 a

n
“X

”)
 a

llo
w

 r
es

ea
rc

he
rs

 to
 s

ki
p

th
e

irr
el

ev
an

t p
ar

ts
 o

f t
he

 p
ro

ce
ss

 w
he

n
po

ss
ib

le
. T

he
re

 a
re

 u
se

r
ta

sk
s

(m
ar

ke
d

by
 p

eo
pl

e)
 a

nd
 s

cr
ip

t

ta
sk

s
(m

ar
ke

d
w

ith
 a

 p
ap

er
 ic

on
),

an
d

a
D

M
N

 ta
bl

e
re

fe
re

nc
e

(th
e

sp
re

ad
sh

ee
t i

co
n)

 is
 a

ls
o

re
pr

es
en

te
d

he
re

. T
hi

s
is

 s
til

l o
nl

y
a

su
bs

et
 o

f t
he

 la
ng

ua
ge

 e
le

m
en

ts
 a

va
ila

bl
e.

 B
C

A
: b

ill
in

g

co
ve

ra
ge

 a
na

ly
si

s.

S
et

 W
or

kf
lo

w
S

pe
c

ID
C

al
l F

in
an

ce
:

W
or

kf
lo

w
 S

ta
rt

N
ee

d
B

C
A

or
 B

ud
ge

t
S

et
 C

on
tr

ac
t

S
ig

ne
d

S
et

 E
nt

ry
 B

y
G

ro
up

 N
am

e

S
ig

ne
d

C
on

tra
ct

?

G
et

A
ss

oc
ia

te
s:

G
ro

up
s

In
fo

C
al

l F
in

an
ce

:
W

or
kf

lo
w

 E
nd

C
al

l A
ss

oc
ia

te
s:

C
ur

re
nt

 U
se

r
In

fo
S

et
 C

on
tr

ac
t

D
at

es

G
et

 C
on

tr
ac

t
F

un
de

d
E

xe
cu

tio
n

In
fo

entry_by

Contract

S
et

 E
nt

ry
 B

y

B
C

A
 o

r
B

ud
ge

t?

N
o

N
o

Ye
s

Ye
s

INSIGHTS

 JANUARY/FEBRUARY 2023 | IEEE SOFTWARE 7

an upcoming release of SpiffWork-
flow, we will provide tools for build-
ing API calls using a service task that
requires no custom software devel-
opment outside of the BPMN model.
This effort is underway and should
be released by the time this article is
published. Interactions with external
services can at times become very
complex (API keys, asynchronous
calls, and authentication handoffs),
so we are also actively developing a
means to manage these security con-
cerns as well.

To track important events, we
made a logging function available
to script tasks as well. In this way,
the developers of the BPMN models
could call out specific events during
the execution of a workflow. Other
functions also available to script
tasks are able to query on these logs
to determine things like the time
between two events (for instance,
“it took three days from the time
the approval was requested to it be-
ing accepted”). The ability to query
the logs meant that the BPMN de-
velopers could build their own cus-
tom reports. The BPMN flow would
display a form that accepted certain
parameters; it would then query the
logs to find the information, and fi-
nally, display the data using Python’s
Jinga templates to render the report
as an HTML table. We are now cre-
ating general-purpose reporting sys-
tems as well to answer questions that
were not premeditated.

Some Successes
Although it was painful at times to
build a tool while simultaneously try-
ing to use it for a specific project, it
allowed us to learn some valuable les-
sons and to make a few really good
choices. Most of our good choices
were simply applying good software
development practices to BPMN, such

as the DRY principle; using a version
control system; and automating tests.

We worked hard to ensure that
any code embedded in the BPMN
diagrams could be evaluated as Py-
thon, and it was definitely the right
thing to do. BPMN uses conditional
logic for gateways; its script tasks
must be evaluated; DMN tables con-
tain many expressions; and forms
often need expressions for things
like whether to show or hide an in-
put field. Our battle to ensure that
all of these things were consistently
evaluated in the same way was hard
but enormously beneficial. When
building “low-code” applications,
one must ensure that their users are
learning only one programming lan-
guage, not many.

We created a testing framework for
quick feedback on BPMN diagrams,
and while it was not as comprehensive
as a suite of unit tests, we were able
to build a basic tool to sanity-check
our BPMN diagrams for errors by ex-
ecuting them within a test harness—
completing forms with random data
(or no data at all if the field wasn’t re-
quired) and executing some, if not all,
paths through the workflow to ensure
that the process would work. We plan
on carrying this further, allowing us
to define assertions and connect them
to the BPMN model in some way. We
can also set breakpoints on a spe-
cific task in a BPMN diagram to al-
low easier debugging at that point
of execution. What we learned early
on was that even an imperfect test-
ing framework–if it offers instant
feedback–pays enormous dividends
in productivity and reduced frustra-
tion. “Low-code” modelers require a
lively6 programming environment to
make progress, just like the rest of the
development world.

A recent refactor moved our
BPMN diagrams out of the database

and onto the file system, where they
are maintained as a Git repository.
This has a host of benefits. It raises
the BPMN diagrams to their right-
ful status as collaboratively built
software. The transfer of diagrams
between instances (that is, from de-
velopment to staging to production)
can be handled with fine-grained
control over precisely which changes
are merged and deployed. With
BPMN diagrams in a Git repository,
it is now trivial to pull down the lat-
est production version, find the is-
sue, and push up a fix (While we
have not put it to use yet, this would
be an ideal place to utilize the BPMN
Diffing library7 with BPMN.js to vi-
sualize the differences8 rather than
looking at the XML.) It’s so useful
that it almost feels like I’m pointing
out the obvious. So I’ll at least say it
succinctly: if it smells like code, keep
it in a version control system.

Future Aspirations
Over the last two years, we learned
much about BPMN. Perhaps most
insightful is that we have not learned
to hate it. Conversely, we found our-
selves embracing its many facets and
seeing tremendous potential in this
standard, and we plan to work with
it for many years to come.

We never added a component to
SpiffWorkflow that was not precipi-
tated by a real business need. So it is
interesting to see what components
we did add and which have yet to as-
sert themselves.

Please check out our existing
unit tests (you can find some of our
test BPMN files in this subdirectory
on GitHub9), 521 of them in total,
which cover many core features and
edge cases. In the future, we hope to
build a set of tests around the BPMN
Model Interchange Test Suite,10
which will help clarify our overall

INSIGHTS

8 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

feature set. In the meantime, we took
a close look at Section 2.0 (Confor-
mance) of the BPMN 2.0 specifica-
tion.11 We looked at 70 core aspects
of the specification and categorized
them into seven major areas (Table 1).
There are nuances that are not ad-
dressed with these numbers. This is
not meant to be a thorough study
of our implementation but a brief
self-assessment in the hopes that it
sheds light on where the specification
helped us address our needs versus
areas where we could not make an
effective implementation work.

Support for data structures
stands out at a lackluster 12.5%.
The reasons are twofold. First, the
standard is somewhat vague on how
data should be scoped and passed
between activities and tasks. Sec-
ond, the implementation of these in
the BPMN.io editor we depend on
is incomplete since Camunda went
its own route for data management
(likely because of the first point).

We have not implemented the ser-
vice task (under “Tasks and activi-
ties” in Table 1) as of yet, but the need
is there. We were able to accomplish

calls to external systems using script
tasks, but the asynchronous behavior
and the added security and clarity of
service tasks are highly attractive and
are currently under active develop-
ment in our GitHub repository.

We have some limitations in our
support of events and messages.
We’ve found that we often compose
processes using call activities and
shared repositories of reusable work-
flow processes that we call Librar-
ies. I suspect that as we build larger
and more complex systems, we will
become more reliant on messages
and less so on call activities. We have
recently commenced heavy develop-
ment work on messages, also avail-
able on GitHub.

The more important truth in
these numbers is how well the stan-
dard did address our needs. When
we needed to allow people to com-
plete steps out of order, the parallel
gateway was there. When we needed
to build approval processes, the
lanes were there. When we needed to
interrupt that approval process mid-
stream because of a change of heart,
messages and events were there.

When we implemented these BPMN
solutions, we were often astonished
at their power and versatility.

Having now done it, would we
recommend that others create their
own BPMN interpreter/compiler?
They would need a very compelling
reason. It is inglorious work. We hope
that having this robust open source
Python-based BPMN interpreter will
open the door for exploration into the
future evolution of BPMN. We hope
that we have saved others from the
grueling effort of the baseline imple-
mentation so that they might enjoy
the more delightful opportunity to
experiment in new frontiers.

For those building a Python ap-
plication that would benefit from an
embedded BPMN system, I would
certainly encourage them to consider
using the SpiffWorkflow library. We
plan to continue our contributions,
and we are about to undertake the
development of a whole new set of
libraries that will make integrating
SpiffWorkflow into custom applica-
tions even easier.

T his is an exciting time for
SpiffWorkflow. We are col-
laborating with four compa-

nies on enhancements to the library
and have received a similar number
of recent pull requests from exter-
nal contributors. These are small
numbers, but they reflect major in-
vestments in time and energy from
previously unaffiliated sources.
SpiffWorkflow has also received 300
additional stars (likes) on GitHub
in the last year as well as tickets
and feature requests from around
the world, creating an exponential
growth curve over the course of the
last 10 years.12 There is momentum
here that we are building upon, and
we believe that the greatest years of

Table 1. A rough overview of the features defined
in the BPMN 2.0 specification versus features

implemented in the SpiffWorkflow Library.

Data Total Implemented Percentage

Tasks and activities 11 9 81.82%

Flow control 9 9 100%

Pools and lanes 3 3 100%

Events and messages 35 26 74.29%

Visual appearance 1 1 100%

Data 8 1 12.5%

Miscellaneous 2 1 50%

Grand total 69 50 72.46%

INSIGHTS

 JANUARY/FEBRUARY 2023 | IEEE SOFTWARE 9

innovation lay ahead—in what our
users will create with this library.

References
1. “List of BPMN 2.0 engines.” Wikipe-

dia. Accessed: Jun. 5, 2022. [Online].

Available: https://en.wikipedia.org/

wiki/List_of_BPMN_2.0_engines

2. B. Silver, BPMN Method and Style.

Aptos, CA, USA: Cody-Cassidy

Press, 2012.

3. B. Silver, DMN Method and Style:

The Practitioner’s Guide to Decision

Modeling with Business Rules. Aptos,

CA, USA: Cody-Cassidy Press, 2018.

4. “Samuel Abels.” GitHub. Accessed:

Jun. 25, 2022. [Online]. Available:

https://github.com/knipknap

5. “Putting it all together.” Spiff-

Workflow. Accessed: Jun. 25,

2022. [Online]. Available: https://

spiffworkflow.readthedocs. io/

en/latest/bpmn/synthesis.html#

examining-the-workflow-state

6. S. L. Tanimoto, “A perspective on

the evolution of live programming,”

in Proc. 1st Int. Workshop Live

Program., May 2013, pp. 31–34, doi:

10.5555/2662726.2662735.

7. “bpmn-io/bpmn-js-differ.” GitHub.

Accessed: Aug. 5, 2022. [Online].

Available: https://github.com/

bpmn-io/bpmn-js-differ

8. “bpmn.io.” GitHub. Accessed: Aug.

5, 2022. [Online]. Available: https://

demo.bpmn.io/diff

9. “sartography / SpiffWorkflow.”

GitHub. Accessed: Oct. 10, 2022. [On-

line]. Available: https://github.com/

sartography/SpiffWorkflow/tree/

main/tests/SpiffWorkflow/bpmn/

data

10. “bpmn-miwg/bpmn-miwg-test

-suite.” GitHub. Accessed: Oct.

10, 2022. [Online]. Available:

https://github.com/bpmn-miwg/

bpmn-miwg-test-suite

11. “Business process model and

notation,” Object Management

Group, Needham, MA, USA, 2010.

 Accessed: Oct. 10, 2022. [Online].

Available: https://www.omg.org/spec/

BPMN/2.0/

12. “Star History.” Accessed: Oct. 10,

2022. [Online]. Available: https://

star-history.com/#sartography/

SpiffWorkflow

ABOUT THE AUTHOR

DAN FUNK is the owner of Sartography, Staunton, VA 24401 USA, a

software consulting firm that focuses on supporting academic research.

Contact him at dan@sartography.com.

